
Alternative Technologies 

IDM - RS/1 INTERFACE USERS MANUAL 

PREPARED BY 
DAVID MCGOVERAN 

COPYRIGHT 1985 BY 
ALTERNATIVE TECHNOLOGIES 

150 FELKER STREET, SUITE E 
SANTA CRUZ, CALIFORNIA 9506 D 

408/425-1859 
ALL RIGHTS RESERVED 

1 



CONTENTS 

1. INTRODUCTION 

1.1 A TYPICAL SEQUENCE OF CALLS 

2. HIGHER LEVEL ROUTINES 

3. ROUTINES TO MANAGE THE COMMUNICATIONS AREAS 

3.1 ACCESSING CDA AND LOA FIELDS 

3.2 CHANGING DEFAULTS 

4. BASIC INTERFACE ROUTINES 

APPENDIX A: CDA FIELDS 

APPENDIX B: CODES 

2 • > 



1. INTRODUCTION 

The IDM-RS/1 interface enables you to access, fro• RS/1, 
inforaation stored in the IDM database. You interface with 
the IDM by •eans of program calla wt thin RS/1. 

The IDM-RS/1 interface requires two types of communication areas: 

Logon Data Area (LDAJ 

Communication Data Areas (CDAJ 

There ts one LDA for each RS/1 program which accesses IDM. 
The LDA is a 64-byta data area (within the RS/1 program) which 
the interface uses to facilitate communication between IDM and 
RS/1. You sat up the LDA by issuing the O•LON call (described 
below) within your RS/1 program. Once you have sat up the LDA, 
the IDM-RS/1 interface •anagas the LDA for you. 

The CDA is tha name of a 64-byta data area (within the RS/1 
program) which the interface uses to identify and control an 
active query statement. There is one CDA associated with each 
active query statement. Each CDA controls anly one query 
statement at a time (after you have closed a CDA, the 
interface can use that CDA to control another query stataaant). 
You can have a •axi•um of 20 active query stateaents at the same 
ti•• in a single program (you can change this •axi•U• nu•bar by 
using the o•SETPARAMS function, described below). You eatabltsh 
a CDA by isauing an O•OPEN call from within your RS/1 program. 
Once you have established a CDA data area, RS/1 ••nages it for 
you; you naad only use the CDA-id (returned by tha O•OPEN 
call) to tall RS/1 which CDA you are using. A CDA-id is 
siailar to an RS/1 channel-id CCHNID), which is used to reference 
open files. It is also, in fact, an IDM runti•a control block. 

Not all data types era supported between the IDM and RS/1; 
however, those which are supported cover most of the requirements for 
converting RS/1 tablas to IDM relations and IDM relations to RS/1 
tablas. Tha following are supported: 

integers - short CiINT2l and long CiINT4l 
floating point - single (iFLT4) and double precision (iFLTBJ 
string - null terminated ASCII (iSTRINGJ. 

Return codes are supplied at two levels: RS/1 and IDM. RS/1 
return codes provide miniaal success/failure infor•ation and are 
made directly available as return parameters. IDM return codas 
must be requested by calling the routine •o•CDUMP" and examining 
the value in bytes 4-7 as a binary coded integer (int4). This is 
can also be achieved by calling "O•CURSOR_RPC". 

The CDA format and its component fields are described in 
Appendix A. 

3 



1.1 A TYPICAL SEQUENCE OF CALLS 

A typical sequence of calls using the interface might appear es 
in the following figure. The symbol •f" ts the RS/1 prompt. 
Always enclose string constant parameters within single quotes. 
Quotes embedded within query statements should always be double 
quotes. Ord1nari Ly 1t would be advantageous to perform the 
0$FETCHV Loop 1n a procedure. 

# SUCCESS = 0 
#CALL 0$LON( 1 MYUSERNAME 1 , 1 MYPASSWORD 1 ) 

#ID = 0$0PENCl 
#CRC = 0$SQL3[ID, 1 open vino') 
#CRC = 0$EXEC[ID) 
#CRC = 0$SQL3{ID,'range of s ts stores') 
#CRC = 0$EXECCID) 
#CRC = OtSQL3(ID, 1 dalete s where s.storenum = 8 1 ) 

#CRC = 0$EXEC{ID) 
#CRC = 0$SQL3(ID, 1 retrieve (s.storanum) 1 ) 

#CRC = 0$EXECCID) 
#CRC = 0$0EFINE_ALL(IO) 
#CRC = 0$FETCHV(ID,STORENUMBER) 
#IF CRC = SUCCESS THEN TYPE STORENUMBER 
#IF CRC = SUCCESS THEN CRC = 0$FETCHV 
#etc. until and of fetch 

• 
• 

• 
ar else flush the buffer with 

#CALL 0$0PTCID,O,Dl 
#CRC = 0$CLDSE{IDl 
#CRC = 0$L060F() 
# 

FIGURE 1 

4 



2. HIGHER LEVEL ROUTINES 

Th;s section describes the higher level routines that perform 
soma of the more common tasks in the IDM-RS/1 interface. You 
can perform additional tasks by using one or •ore of tha low 
Laval interface routines described in Section 4. 

RS/1 call 

Brief Dascr. 

where: 

ntuples = 0$SELECT2TABLE [quarystate•ant,tablaname) 

Produces an RS/1 tabla from the IDM database, 
based on e query statement. 

ntuplas is the variable into which the number of tuples in 
the resultant RS/1 table will be returned 

querystatament is the query steteaant which specifies the 
data which is to be •oved into the RS/1 table 

tablename is the name of the resultant RS/1 table 

Remarks: 

This routine produces a table with all the data specified by the 
query statement. It has the effect of doing an 0$0PEN, 
OtSO.L3, 0$EXEC, OtDEFINE_ALL, as many OtFETCHT cal ls as a ra 
necessary to retrieve all the data, and an OtCLOSE. If this 
routine gate any error codes, it prints out the IDM error aeasaga 
[from OSERMSGJ and does an RS/1 error return. 

If you omit either argument, RS/1 will proapt you for the 
required information. 

Before calling this routine, you •ust have set up the IDM 
interface by using the O•LON call (described in Section 4.). 

/ 

Exaapla: 

#N=OtSELECT2TABLE['Salect •from EMP','EMP_RS1') 

---------------------------------------------~-------------------

5 



RS/1 call 

Brief Descr. 

where: 

viewname 

tablename 

database 

Remarks: 

REL2TABL(viewname,tablename,database) 

Produces an RS/1 table from an IDM view or 
relation. 

is the name of the IDM view or relation 

is the name of the resultant RS/1 table 

is the database in which ~iewname is to ba found 

This routine is similar to 0$SELECT2TABLE, except it takes an 
IDM view name or relation name, instead of an query statement, and 
produces an RS/1 table containing all the data in that view or 
relation. It opens the designated database, performs an 
OtDEFINE_ALL and as •any o•FETCHT calls as are necessary to copy 
the relation into the ~esignated RS/1 table. If the database and 
relation or view selected do not exist, the procedure wi LL exit 
with an appropriate error •essage. 

If you omit any argument, RS/1 wi LL pro•pt you for the 
required information. 

Examples: 

I CALL REL2TABL 
Enter relation or view name: mydata 
Enter table name: •ytab 
Enter database name: alldata 
Creating table ••• 
Table successfully created. 
I 

6 



RS/1 ca LL 

Brief Descr. 

where: 

vtewna11e 

tablename 

database 

Remarks: 

TABL2REL[vtewname,tablename,database) 

Produces an IDM relation from an RS/1 table. 

ts the name of the IDM view or relation 

ts the name of the resultant RS/1 tabla 

ts the database in which the relation 
ts ta be created 

This routine creates the specified relation in the selected 
database using all the data in an RS/1 table. It opens the 
designated database, creates a relation with one attribute par 
table coluan, and appends tabla data to the relation. Attribute 
names are detarminad by the first twelve characters of the column 
names. This procedure assumes that the RS/1 tabla selected ts in 
first normal form, that rows containing non-string EMPTY values 
may be ignored, and that columns containing neither integer, 
string, or float values may be ignored. Only the first 255 
characters of text strings Langer than 255 are supported. These 
restrictions may be circumvents~ in particular cases by writing 
procedures using the lower-level interface routines described in 
section 4 below. 

If you omit any argument, RS/1 wt LL proapt you far the 
required information. 

Example: 

I CALL REL2TABL 
Enter relation or view name: aydata 
Enter tabla name: mytab 
Enter database name: alldata 
Creating relation ••• 
Relation successfully created. 
# 

7 



3. ROUTINES TO MANAGE THE COMMUNICATIONS AREAS 

3.1 ACCESSING CDA AND LDA FIELDS 

You can look at soma of the fields within a CDA directly 
through the following IDM-RS/1 calls: 

CDA Field 

Return code 

Function code 

IDM return code 

IDM-RS/1 Routine 

ere = 0$CURSOR_RCODE(CDAJ 

fc = 0$CURSOR_FC(CDAJ 

re = OtCURSOR_RPC(COA) 

You can access the return code field of an LOA directly by using 
the call 

lrc = OtLDA_RCODE[) 

Sea also 0$CDUMP below. 

3.2 CHANGING DEFAULTS 

There are, by default, a •axiaua of 

o 20 CDAs per program 
o 200 fields per query atate•ent (for fetches) 
o 10,000 bytes of data which can be transferred by a FETCH 

operation 
o 64 substitution fields per CDA (for BINDS) 
o 512 bytes of data per CDA which can be transferred to 

IDM via 0$BINDINFO 

8 



For VMS, where dynamic allocation is available, the interface 
structures are not set up until runti•e, and you can change the 
defaults (only before calling OSLONl by using the following 
routine: 

CALL OSSETPARAMS CnCDAs, nfialds, fatchaz, nsubat, 
bindszl 

where 

nCDAs 

nfields 

fatchsz 

nsubat 

bindsz 

is the new maximum number of CDAs. It 1• 
generally advisable to keep this nu•b•r aa ••all 
as possib la. 

is the new maxi•um number of fields par query 
statement 

is the new maximum nu•ber of bytes of data which 
can be transferred by a single FETCH operation 

is the new •axi•um number of substitution 
variables par query etate•ant 

is the new maxi•u• number of bytes of data par 
CDA which can be transferred to IDM with 
OSBINDINFO 

You can see the current values which are in affect for these 
parameters by using the call 

flg = O•GETPARAMNS CnCDAs, nfialde, fatchsz, neubst, 
bindszl 

The interface will return the currant values in the variables 
nCDAs, nfialds and fatchez. The value returned in flg will be 
TRUE if the interface is currently active Ci.a., if OSLON has 
bean cal Lad), otherwise it will be FALSE. Note 1;hat a.LL 
para•atars are strictly liaitad by the •axi•u•s eat within 
Britton-Lea VAX runtime support software. 

4. BASIC INTERFACE ROUTINES 

This section describes the low Leval IDM-to-RS/1 interface 
routines that correspond to the routines provided with the IDM 
system. Each corresponding IDM routine is listed below as 
"lDM routine" and ts described in the IDM PHI document. 

Many of the original IDM interface routines, when they take 
text arguments, can also take a length argument tf the text ts 
not null-terminated. For example, OSQ.L3. In all ca••• on input 
to IDM, RS/1 wi LL hand La the length information iteelf--you 
will not specify it. On output from IDM to RS/1, RS/1 w1 ll 
handle the cases as shown in the descriptions below. 

9 



RS/1 call: ere = O•BIND CCDA-td, target, target-value) 

Brief Descr.: Modifies an query statement after it has been passed 
to IDM, by assigning a program value to a 
substitution variable within the statement. 

IDM routine irsubst 

where 

ere 

CDA-td 

target 

targetvalue 

Remarks: 

ts the variable into which the CDA return code 
will be returned CO means the 0$8IND was 
successful, nan-zero •eans the call failed). 

t s the v a rt ab l e cont a i n i n g the i d of the C DA 
associated with the query stateaent containing the 
substitution variable 

specifies the substitution variable. You can 
&pacify it by name or by number. To specify by 
nuaber, •target" •ust specify a binary integer. 
Thia integer identifies the substitution variable 
according to its relative position within tha query 
statement (from left to right, the first 
substitution variable ts number 1, the next ts 
nuabar 2, etc.). To specify by na•a, •target" ?? 
must specify the character string name of the 
substitution variable. 

ts the name of a variable in your program, which 
contains the value to be substituted tnto the 
substitution variable. 

After using the O•BIND call, you ••Y than execute the statement, 
modify tt again using 0$BIND, re-execute tt, ate. You use 0$BIND 
a f ta r an 0 • S Q L o r 0 • SQ L3 c a l l an d p r t o r to a n 0 •EXEC ca l l • l f 
the same aubatttution variable name occurs •ore than once, e 
single cal L to O•BIND wtl l bind them all. If there is more than 
one substitution variable naae, you •ust use e separate o•BIND 
call for each. 

10 



RS/1 call: CALL 0$CDUMP (CDA-id) 

Brief Descr.: Types out the contents of the specified CDA. 

IDM routine 

where 

CDA-id 

Remarks: 

Bytes 4-7 contain the IDM return code for the 
most recant command, as a binary coded integer 
(int4). 

(none) 

is a variable containing the id of the CDA 
being examined. 

This call is intended for debugging purposes only. 

RS/1 call: ere = O•CLOSE (CDA-id) 

Brief Descr.: Disconnects a CDA from IDM and frees all 
resources related to it. 

IDM routine irclose 

where 

ere 

CDA-id 

Remarks 

is the variable into which the CDA return-coda 
wi LL be returned. 

is the variable containing the id of the CDA to 
be disconnected. 

D1sconnacta the CDA and frees ell the resources obtained by 
the 0$0PEN, 0$SQL or O•SQL3, and OSEXEC calla which use this CDA. 

If the c~LL fails, the reason wi LL be indicated in the IDM CDA 
return code (see o•cDUMPl. 

11 



RS/1 call: ere = 0$CLOSEALL() 

Brief Dascr.: Disconnects all open CDAs from IDM and frees 
all resources related to them. 

IDM routine aulttple trclose calls 

Remarks 

Disconnects all the CDAs and frees all the resources obtained 
by the 0$0PEN, OSSQL or 0$SQL3, and 0$EXEC calls. 

The code returned wt LL be non-zero if IDM returned any non­
zero values from OCLOSE. 

-----------------------------------------------------------------
RS/1 call: rc=OIDEFINE (CDA-td,posttton,exttypa,aaxlan) 

Brief Dascr.: Sets up a buffer to receive the data spactftad tn 
one field of the target list. 

IDM routine trbtnd 

where 

CDA-id 

position 

exttype 

maxlan 

Remarks 

ts a variable containing the id of the CDA 
associated with the query statement. 

ts a binary integer which epactftes the position 
of the field in the target list. The fields are 
numbered left to right, beginning with 1 for the 
left•ost field. 

ts a nuaber which spectftes the data type to which 
IDM should convert the data. 

ts a binary integer which specifies the •exi•um 
length this field will have. 

Sets up a buffer to recet ve the data specified in one field of 
the target list of the query statement associated with 
•cDA-td". 

You issue one O•DEFINE for each field to be retrieved. 

12 



RS/1 call: nfi el ds = o•DEFINE_ALL[CDA-i d) 

Brief Descr.: Sets up buffers to receive the data specified in 
all the fields in a target list. 

where 

nfie lds 

CDA-id 

Remer ks 

ts a binary integer which apactfias the •u•ber of 
fields (beginning with the left•ost field) in the 
target list of tha query steteaant th•t were 
set up for retrieval by this call. 

ts a variable containing the id of the CDA 
associated with the query statement. 

This routine sets up buffers to receive the data specified in ell 
the fields in a target list. Next, it sets aside internal RS/1 
storage for retrieval of all fields and tnfor•s the IDM where this 
storage ts and what date types to return. This call does not 
actually retrieve the data; the FETCH calls do the actual data 
retrieval. For each field, o•DEFINE_ALL does the equivalent of an 
OtDESCRIBE (t~ determine the IDM datatype and other 
characteristics) and an o•DEFINE [to define a buffer for it). 

See also the description of D•DEFINE. 
-----------------------------------------------------------------
RS/1 call: ere = D•DESCRIBE(CDA-id,poa,•exsize,raalsiza, 

rcode,dtypa,na•a,dtspsize) 

Brief Descr.: Returns the IDM data type and size information 
for a field in e target list. 

where 

ere 

CDA-id 

pos 

maxsize 

is the variable into which the CDA return-coda 
will be returned CD ••ans the o•DESCRIBE was 
successful; non-zero ••ans the call failed). 

ts the variable containing the id of the CDA 
associated with the query atata•ant. 

is a binary integer which specifies the position 
of the field in the target list. The fie lda and 
expraastons are numbered left to rfght, beginning 
with 1 for the left•oat field or expression. 

returns a binary integer which specifies the 
maximum size of the field or axpraaston. If the 
field ts defined es iCHAR in the query co••ands 
CREATE relation or ALTER relation, then tha length 
returned ts the maximum length specified for the 

13 



realsize 

rcode 

db type 

name 

dispsize 

Remarks 

f;eLd in that particular CREATE relation or ALTER 
relation. 

returns a binary integer that indicates the actual 
size of the data fie Ld returned by the Last FETCH 
operation. The value returned is the actual 
Length of the field as stored in the database 
before it is moved to the user buffer, where 
padding or truncation may take place. IDM 
suppresses leading zeros on numeric date end 
trai Ling zeros on coapressed character date before 
storing the fields in the database. •Reala1ze" is 
valid only if OtDESCRIBE is issued after a FETCH 
ce LL. 

returns a binary integer indicating the individual 
field's return code returned by the last FETCH 
operation. •Rcode" is valid only if OtDESCRIBE is 
issued after a FETCH call. 

returns e binary integer that indicetas the 
internal data type of the field as it is stored in 
the database. Fields stored as ASCII strings 
return a value of 1; fields stored in IDM 
extended precision floating-point return a value 
of 2. Dates return 5; long texts return a. 
returns the naaa of the attribute. 

returns a binary integer that specifies the 
maxi•u• display size of the field when 1t is 
returned es a character string. •Dispsiza" is 
especially useful when functions are used to 
aodify the representation of a column. 

DtDESCRIBE operates positionally, one field or expression per 
cell. It references each field or expression 1n the target 
list as if each ware nuabered consecutively, left to right, 
beg;nning with 1. 

You can use OtDESCRIBE after en OtSQL or OtSQL3, OtEXEC, or 
before eny of the FETCH calls to determine the •aximum size, 
internal datetype, and attribute names of fields to be returned 
as the result of e query. 

If you specify e position nuaber "pas" which is greater than the 
nuaber of fields in the target list, OtDESCRIBE will return an 
and-of-file indicator ;n the return-code. Th;s allows programs 
to dynamically determine the number of fields to be returned as 
the result of a query. This is necessary if the program does not 
know in advance how many fields there are in the target list, as 
in the case of "SELECT"[SQL] or •RETRIEVE"CIDLl. 

14 



RS/1 call: magtxt = OSERMSG (rcode) 

Brief Dascr.: Returns an IDM message text 

IDM routine 

where 

msgtxt 

rcode 

Remarks 

arrstring [Saa gatarr(3I) in PHI.] 

is the variable into which the error ••••ege text 
will be returned. 

specifies the IDM return coda for which the •assaga 
text is to be returned. 

Returns the IDM error •aasage text corresponding to the IDM 
return coda (from a CDA). RS/1 wi LL pass a 132-byte buffer to 
the IDM and wi LL return Just the text (without trailing blanks). 

If there is no •essaga which corresponds with the return code, 
then the •easage •unknown IDM error •rcoda•• is returned. 

RS/1 call: ere = D•EXEC (CDA-id) 

Brief Deacr.: Executes an query atate•ant 

IDM routine iraxec 

where 

ere 

CDA-id 

Re•arks 

is the variable into which the CDA return code 
will be returned. 

is the na•e of the CDA associated 
with the query atate•ent being executed. 

Executes tha query atata•ant currently associated with "CDA-id". 

If the query atata•ant is a data •anipulation, data definition, or 
data control statement, the entire query function is parfor•ad at 
this ti•a; the •coA return coda" is sat. If the query stata•ant 
is a "SELECT" [SQL) or •RETRIEVE" lIDL), you •ust explicitly 
request each tuple of the result using a FETCH call. 

15 



RS/1 ca lL: 
or 
or 
or 

Brief Descr.: 

OtFETCHV 

OtFETCHT 

OtDOFETCH 

ere= OtFETCHV (CDA-id, val1, val2, ••• J 
ere = OtFETCHT (CDA-id, tablenaae, rownu•ber) 
ere = O•DOFETCH lCDA-id) 
vrc = OtFETCH1VAL (CDA-id, position, vblel 

Retrieves one or •ore valuae fro• en IDM 
relation, as specified by the SELECT or 
RETRIEVE list in an query stataaent. 

Retrieves one or more values into variables. 
This version is useful when you know in 
advance how many fields there are. You muet 
cell OtDEFINE or OtDEFINE_ALL prior to this 
call. 

Retrieves values into e row of a table. 
You must call O•DEFINE or OtDEFINE_ALL prior 
to this cal L. 

Retrieves (fro• IDM, into an internal RS/1 
buffer) values for all the fields specified 
by the preceding OtDEFINEs or OtDEFINE_ALLs on 
the same CDA-id. Operates in conjunction 
with OtFETCH1VAL. 

O•FETCH1VAL Retrieves one value [from the buffer of 
ve lues set up by an OtDOFETCHJ into a 
variable. Operates in conjunction with 
OtDOFETCH. 0$FETCH1VAL does not actually 
ca l l any ID M rout i n e. I t on l y ao v es 

where 

values from the RS/1 internal fetch buffer to 
the user's variable. 

ere is the variable into which the CDA return code 
will ba returned. 

CDA-id is the variable containing the id of the CDA 
associated with the query query statement. The 
CDA-i d in OtFETCH1 VAL •ust ba the sa•e as used 
in the •oat recant preceding OtDOFETCH. 

val1, val2 ••• are tha names of variables in your RS/1 program 
into which the retrieved values will be placed. 

tablename is the name of the RS/1 tabla into which the 
retrieved values are to be placed. 

tuplenumber is the number of the tuple within •tablana•a• into 
which the retrieved values are to be placed. 

position is a binary integer which specifies tha poaition 
of the field in the target list. The fields are 

18 



vb le 

Remarks 

nu•bered left to right, beginning with 1 for the 
left•ost field. 

is the variable in your RS/1 program into which 
the retrieved values will be placed. 

Fields you request in character string for•at will be left 
Justified and padded with trailing blanks. Character elrtngs 
that are too long for the field buffer will be truncaled and the 
return coda of the CDA will be sat to +3. If RS/1 encounters 
null va luas on a fetch, the return coda of the CDA wt l l be sat to 
+2 and the buffer will remain unchanged. After the IDM has 
returned the last tuple of the query result, any subsequent fetch 
operations will return an end-of-fetch ratu~n coda (+4]. If the 
IDM encounters conditions which produce •ore than one non-zero 
return coda in a single fetch operation, the CDA return coda will 
contain the coda of the last condition encountered. 

RS/1 call: lrc = OSLOGOF Cl 

Brief Dascr.: Disconnects a program from the IDM interface 
and frees all IDM resources for the progra•. 

IDM routine no equiv. 

where 

lrc 

Remarks 

is a variable in which the return coda field of 
the LOA will be returned (0 =no error]. 

Disconnects the currant program from IDM and frees all IDM 
resources owned by this program. Freas up all •a•ory used by the 
interface. 

If the call fails, the reason is indicated tn the LDA return 
coda. 

OSLOGOF auto•atically closes any currently open CDAs. 

17 



RS/1 call: lrc = 0$LON Cuserid, password[, flag]) 

Brief Descr.: Initializes the interface 

IOM routine initidmlib 

where 

lrc 

use rid 

password 

flag 

Remarks 

is a variable in which the return code field of 
the LOA will be returned CO=no error). 

is your IOM user-id. 

is your IOM password. 

dummy parameter. May be ignored. 

This call is the initialization routine for the interface. It 
sets up the communications areas and all other necessary 
structures C LOA, COAs, etc.J. It returns the ratu rn coda 
field of the LOA [the first two bytes of the LOA, which are set 
to 0 if there is no error, the error return codes ere listed in 
the IDM •Ho st Software Message Su••ary•. 

This call must precede any other IDM interface calla. 

A program can execute one and only one 0$LON call. 

After an 0$LON is executed, the program •ust eventually execute 
an 0$LOGOF call. 
-----------------------------------------------------------------
RS/1 call: ere = 0$NAME CCDA-id, position, na•al 

Brief Dascr.: retrieves the na•a of an attribute used 1n a target 
list of an query statement. 

IDM routine 1rdesc 

where 

ere 

CDA-id 

poai ti an 

is the variable into which the CDA return-code 
will be returned. 

ts the var1 ab la contai n1 ng the id of the CDA 
associated with the query statement. 

is a binary integer which specifies the position 
of the attribute in the target list. The fields and 
expressions are numbered left to right, beginning 
with 1 far the leftmost field or expraaaton. 

18 



name 

Remarks 

returns the name of the attribute [associated with 
the ft al d). If "ne•a" ta •0 11

, then the name wt l l 
not be returned. 

You can get the na•a by using the 0$DESCR1BE call, as wel Las by 
using the 0$NAME call. 

0$NAME operates poatttona l ly, one field or expression par call. 
It references each field or axpreast~n in the target ltat as if 
each ware numbered consecutively, left to right, beginning with 
1 • 

You can use 0$NAME after an 0$SQL or 0$SQL3 call to get the name of 
the attribute to be returned. 

The ••xtmum Length of a attribute na•e literal expression text is 
12 bytes, although the internal buffer allows for up to 64. 

If you select a position nu•bar •position• which ts greater than 
the number of fields in the RETRIEVE or SELECT list, OINAME 
returns an end-of-file indicator in the return-coda. As with 
0$DESCRIBE, this allows progra•s to dyna•ically determine tha 
number of fields to be returned as the result of a query. 

-----------------------------------------------------------------
RS/1 call: CDA-id = OtOPEN [[araaatza)) 

Brief Descr.: Establishes a CDA 

IDM routine tropen 

whara 

CDA-id 

araasize 

Remarks 

ta the variable into which the CDA id will be 
returned. 

apactftaa the size of the query work area (QWA) in 
IDM (saa remarks below). 

Establishes a CDA for an query etatement, as specified by a 
subsequent 0$SQL3 call. RS/1 will manage the CDA, 
and will choose the CDA-id. 

You can determine the return code of the 0$0PEN by using the 
OSCURSOR_RCODE (CDA-td) function with the "CDA-id" as 
returned by OSOPEN. Banerelly, if the OSOPEN fai La, 'be returned 
CDA-id variable will be EMPTY. 

19 



The interface allocates one query work area (QWAJ for each CDA 
(i.e., the QWA aust be Long enough to cantai n the coapi led query 
statement plus one ca•plete tuple of data from the IDM relation or 
view being processed). It allocates a separate QWA far each 
0$0PEN call. If you do not specify •areasize•, then the 
interface wi LL establish an QWA of the default size. Yau can 
override this default by specifying a value for •araaafze". If 
you specify a number between 3 and 32, the interface w1 l l 
interpret this number as being in increments of 1024 ~rtea (e.g., 
3 = 3072 bytes, 4 = 4096 bytes, etc.]. If you specfff • nuaber 
from 129 though 32767, the interfece will take this nuabar as the 
number of bytes (e.g., 8003 = 8003 bytes, ate.). 

RS/1 call: CRC = OSOPT(CDA-id,roll,wait) 

Brief Descr.: Cancels currant activity on a specified CDA. 

IDM routine irfluah, ircancal 

where 

CDA-id fa the current CDA id. 

ro LL du••Y integer variable •U&t be 0 

watt dummy integer variable - aust be 0 

Remarks 

This routine cancels any outstanding IDM co••ands and flushes the 
buffers. 

---------------------------------------------------~-------------

RS/1 call: ere = OSSQL (CDA-f d, query) 

Brief Descr.: Passes an SQL query statement to IDM, and 
associates the statement with an open CDA. 

IDM routine f raql 

where 

ere 

CDA-id 

query 

is the variable fnta which the CDA return-code 
will ba returned. 

is the variable containing the id of the CDA ta 
be assocfatad with the query statement. 

is the SQL query atatamant being pasaad ia IDM. 
It can ba any valid query, data aanfpulat1on, data 
definition, or data control statement. 

20 



Remarks 

This function causes RS/1 to clear ita internal inforaation about 
fields that •ay have been used for a previous query state•ent for 
this CDA. 

IDM checks the query statement for validity, and return• an 
error code in •ere" CD •eans the call executed succaaafully; non­
zero aeana the call failed). The error return code• •r• ltated 
in the IDM "Hast Software Massage Su•aary•. You can uaa O•ERMSG 
ta get the error text associated with an IDM error coda. 

•quaryatatemant" aay contain substitution variables anywhere a 
constant is permitted (substitution variables are identified by 
preceding the variab la name with a co lon--e.g., :TRIALNOl. If 
the query statement has substitution variables, you aust use 
the o•BIND call to bind in values far the subatttutian variables. 
You use the O•EXEC call ta execute the state•ent before 
retrieving values. 

-----------------------------------------------------------------
RS/1 call: ere = o•SQLS (CDA-id, query) 

Br;ef Descr.: Passes an IDL query statement to IDM, and 
associates the atataaant with an open CDA. 

IDM routine iridl 

where 

ere 

CDA-id 

query 

Remarks 

is the variable into which the CDA return-coda 
will be returned. 

is the variable containing the td of the CDA to 
be associated with the query statement. 

is the idl state•ent being passed to IDM. It 
can be any valid quary, data •anipulation, 
data definition, or data control stataaant. 

This function causes RS/1 to clear tts internal information about 
fields that •ay have been used for a previous query statement far 
this CDA. 

IDM checks the query statement for validity, and returns an 
error code in "ere" CD means the cell executed successfully; non­
zero means the call failed). The error return codas are listed 
in the IDM "Hast Software Massage Summary". Yau can U88 O•ERMSG 
ta get the error text associated with an IDM error coda. 

21 



"querystatement" ••Y contain substitution variables anywhere a 
constant is permitted [substitution variables ara identified by 
preceding the variable name with a co lon--e.g., :TRIALNO). If 
the query statement has substitution variables, you must use 
the OSBIND call to bind in values for the substitution variables. 
You use the OSEXEC call to execute the state•ent before 
retrieving values. 

22 



Appendix A: CDA DATA AREA 

This appendix describes the CDA and its co•ponent fields. 

The CDA is a 64-byte data area defined within a user progra•. 
The CDA contains status information on an active query 
operation. There is one CDA data area far each active query 
statement within a user program. 

Each CDA has a CDA-id, which RS/1 assigns to it with an 
0$0PEN call. Yau refer to an query statement by specifying the 
CDA-id of the CDA associated with that query atata•ant. 

The CDA far•at is as follows: 

Byte Field Field 
Nu•bers Name Description 

0-1 Return code A binary number that indicates the 
completion code for the specified query 
operation. Zero indicates a successful 
result. A positive return code 
indicates a successful result with an 
exceptional condition. A negative 
return code indicates that an error was 
encountered in atte•pting to perform the 
specified operation. See IDM 
documentation far a ca•plete list of 
return codes. 

2-3 Function Type (Used internally in IDM, not 
supported for user environments.) 

4-7 Return Process A binary nuaber that indicates the code 

s-s 

10 

Cada returned by the IDM for each cal l 
processed. Use tht a code for cal ls to 
0$ERMSG. 

Parsa Error 

Function Coda 

A binary number indicettng the offset 
(in charectersl into the query text where 
the parse error occurred. Thia field ta 
valtd only after an 0$SQL3 call. 

An operation coda indicating the type of 
IDM function requested. The function 
codas are: 

02 OSQL iridl 
04 OEXEC traxac 
06 OBIND iraubst 
OB ODFINN irbind 
10 ODSRBN 
12 OFETCH irfetch 
14 OOPEN trapen 

23 



16 OCLOSE irclose 
22 ODSC irdesc 
24 ONAME irdesc 
26 OSQL3 irsql 
50 OBINDN irsubst 

11 [filler) 

12-63 IDM System (Used internally, not . 
Pare•eter Area supported for user environ•enia.) 

APPENDIX 8: CODES 

1. DATA TYPES 

Th;s interface will support only the following data types: 
two and four byte integer 
four end eight byte floating point 
string. 
All other data types will generate an error when fetched. 

The corresponding codas for these data types ere: 

I2 -
14 
f 4 -
FB -
A 

2. CDA RETURN CODES 

The following are the return code values for the CDA and 
their meanings: 

The following are the return code values for the LDA and 
their •aanings: 

Sae PHI for IDM return coda values and their •••nings. 

In general, O represents success, positive non-zero values e 
warning, end negative values are fetal errors. 

24 


